Системы MathCAD пользуются огромной популярностью во всем мире, позволяя готовить вполне профессиональные документы. Последние версии системы - MathCAD 2000 PRO и MathCAD 2000 Premium, появившиеся в конце 1999 года, содержат тщательно сбалансированные средства численных и символьных вычислений с графической визуализацией результатов в сочетании с самым современным интерфейсом пользователя, мощной справочной системой, обширными пакетами расширения и средствами для работы в интернете.
MathCAD - это популярная система компьютерной математики, предназначенная для автоматизации решения массовых математических задач в самых различных областях науки, техники и образования.
Сегодня различные версии MathCAD являются математически ориентированными универсальными системами. Помимо собственно вычислений, как численных, так и аналитических, они позволяют с блеском решать сложные оформительские задачи, которые с трудом даются популярным текстовым редакторам или электронным таблицам.
С помощью MathCAD можно, например, готовить статьи, книги, диссертации, научные отчеты, дипломные и курсовые проекты не только с качественными текстами, но и с легко осуществляемым набором самых сложных математических формул, изысканным графическим представлением результатов вычислений и многочисленными “живыми” примерами. А применение библиотек и пакетов расширения обеспечивает профессиональную ориентацию MathCAD на любую область науки, техники и образования.
Для решения дифференциальных уравнений в MathCAD введен ряд функций. Вначале остановимся на функциях, дающих решения для систем обыкновенных дифференциальных уравнений, представленных в обычной форме Коши:
· rkadapt (y, x1, x2, acc, n, F, k, s) - возвращает матрицу, содержащую таблицу значений решения задачи Коши на интервале от х1 до х2 для системы обыкновенных дифференциальных уравнений, вычисленную методом Рунге-Кутта с переменным шагом и начальными условиями в векторе у (правые части системы записаны в векторе F, n - число шагов, k - максимальное число промежуточных точек решения, и s - минимально допустимый интервал между точками);
· Rkadapt (y, x1, x2, n, F) - возвращает матрицу решений методом Рунге-Кутта с переменным шагом для системы обыкновенных дифференциальных уравнений с начальным условием в векторе у, правые части которых записаны в символьном векторе F на интервале от х1 до х2 при фиксированном числе шагов n;
· rkfixed (y, x1, x2, n, F) - возвращает матрицу решений методом Рунге-Кутта системы обыкновенных дифференциальных уравнений с начальным условием в векторе у, правые части которых записаны в символьном векторе F на интервале от х1 до х2 при фиксированном числе шагов n.
Функция Rkadapt благодаря автоматическому изменению шага решения дает более точный результат. Естественно, по скорости вычислений она проигрывает функции rkfixed, хотя и не всегда - если решение меняется медленно, это может привести к заметному уменьшению числа шагов. Таким образом, функция Rkadapt наиболее привлекательна для решения систем дифференциальных уравнений, имеющих относительно медленно изменяющиеся решения.
ИССЛЕДОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ С ПОМОЩЬЮ ПАКЕТОВ MathCAD и MathConnex.
|