Обозначим - объем финансирования, рекомендованный i-ой комиссией (i-м игроком)
- общий объем требуемого
финансирования (n - число приоритетных направлений), R - выделенный объем средств. Проблема для центральной комиссии (Центра) возникает в случае, когда S > R, то есть выделенных средств не хватает. В этом случае применяются различные правила принятия согласованного решения. Обозначим - степень приоритетности i-го направления. Если степени приоритетности определены, то согласованное распределение финансовых ресурсов вычисляется по формулам
где параметр g определяется из уравнения
При действии механизмов абсолютных приоритетов Центр определяет ожидаемый эффект от i-го приоритетного направления в случае его финансирования в полном объеме. Таким образом, механизмы абсолютных приоритетов реализуют принцип распределения финансовых ресурсов пропорционально ожидаемым эффектам от направлений (при их достаточном финансировании), то есть = .
Пусть - достоверная оценка финансирования i-го приоритетного направления.
В игре предполагается, что объем финансирования i-го приоритетного направления определяется выражением.
Естественно предположить, что каждая экспертная комиссия по направлению стремится объем финансирования. Поэтому, целевой функцией игроков является полученных финансовых средств. На этапе сбора данных каждый игрок сообщает ведущему игры (в Центр) информацию о запрашиваемом объеме финансирования.
Считается, что Центру известны только границы возможных значений ,i=1, .,n. Поэтому игроки, зная процедуру формирования объемов финансирования , сообщают в Центр такие заявки на финансирование , позволяющие, по их мнению, увеличить им значение своей целевой функции. На этапе планирования, ведущий сначала определяет значения k, такое что
После этого величина g определяется выражением
И, наконец, в соответствии с выражениями (3.1) определяются значения объемов финансирования На этапе реализации игроки подсчитывают значения своих целевых функций. На этом партия игры завершается, и игроки переходят к следующей партии, то есть опять сообщают ведущему заявки на финансирование, ведущий формирует плановые объемы выделяемых средств, и игроки подсчитывают значения своих целевых функций и т.д. Игра заканчивается, когда стратегии игроков сходятся в некоторые равновесные ситуации (в частности ситуация равновесия по Нэшу [10]). По стратегиям игроков в равновесной ситуации можно судить об эффективности исследуемого экономического механизма. Победителем считается тот игрок, у которого суммарное значение целевой функции за все партии игры оказалось наибольшим. В приведенных ниже результатах игрового эксперимента участвовали четверо игроков (n=4). Ожидаемый эффект от каждого направления равнялся Э1=11, Э2=10, Э3=10, Э4=11. Достоверная оценка финансирования каждого приоритетного направления составляла r1=180, r2=190, r3=200, r4=210. И, наконец, объем средств, распределяемых Центром, был равен R=685. Стратегия игроков, представлена на графике, изображенном на рис. 3.1.
|