squared = 0.851815Watson stat = 1.985892statistic =36.40590(F-statistic) = 0.000000
По построенным данным видно, что P-вероятность и t-статистика показывают значимость коэффициентов при уровне значимости 6%. Коэффициент детерминации, F- статистика и ее вероятность указывают на статистическую значимость и адекватность построенной модели.
Теперь перейдем к предпосылкам нарушения МНК. Начнем со статистки Дарбина - Уотсона и теста Бреуша - Годфри на наличие автокорреляции в модели:
Breusch-Godfrey Serial Correlation LM Test: |
F-statistic |
0.025444 |
Probability |
0.875042 |
Obs*R-squared |
0.032466 |
Probability |
0.857009 |
По статистике Дарбина - Уотсона и тесту Бреуша - Годфри отчетливо видно отсутствие автокорреляции в данной модели.
Теперь перейдем к тесту Уайта и оценим данную модель на наличие гетероскедастичности:
White Heteroskedasticity Test: |
F-statistic |
0.240344 |
Probability |
0.956403 |
Obs*R-squared |
1.901579 |
Probability |
0.928524 |
Тест Уайта указывает на отсутствие в данной модели гетероскедастичности.
Теперь перейдем к анализу случайных отклонений в данной модели: проведем проверку на стационарность и нормальное распределение:
В первую очередь проверим остатки на стационарность с помощью теста ADF:
ADF Test Statistic |
-4.564575 |
1% Critical Value* |
-2.6756 |
|
|
5% Critical Value |
-1.9574 |
|
|
10% Critical Value |
-1.6238 |
Была взята спецификация N,0. По данному тесту можно сделать вывод о том, что наличие стационарности случайных отклонений данной модели подтверждается.
Теперь посмотрим на нормальное распределение остатков с помощью теста Жака-Бера:
(JB)= 0,882
Тест Жака-бера указывает на нормальное распределение случайных отклонений в данной модели.
Анализируя данную модель можно сделать следующий вывод:
по P-вероятности и t- статистике коэффициенты данной модели являются статистически значимыми при уровне значимости 6%, также статистически значимой является и сама модель по коэффициенту детерминации, F- статистике и ее вероятности;
переходя к предпосылкам нарушения МНК, можно отметить, что в данной модели отсутствует как гетероскедастичность, так и автокорреляция, что указывает на эффективность и несмещенность оценок данной модели;
остатки в данной модели являются стационарными и имеют нормальное распределение, что является достаточно важным условием построения качественной модели.
Заключение
Одним из традиционных подходов к исследованию макроэкономических процессов является подход, основанный на использовании эконометрических моделей. Эконометрические модели позволяют решать достаточно широкий круг задач исследования: анализ причинно-следственных связей между экономическими переменными; прогнозирование значений экономических переменных; построение и выбор вариантов (сценариев) экономической политики на основе имитационных экспериментов с моделью. Моделирование и прогнозирование макроэкономических процессов является, несомненно, актуальной проблемой и для белорусской экономики. В данной работе были построены эконометрические модели, которые отразили зависимость денежного агрегата M0 от валового внутреннего продукта и индекса цен Республики Беларусь за период 2005-2006 год.
|